If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+12x=4
We move all terms to the left:
9x^2+12x-(4)=0
a = 9; b = 12; c = -4;
Δ = b2-4ac
Δ = 122-4·9·(-4)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{2}}{2*9}=\frac{-12-12\sqrt{2}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{2}}{2*9}=\frac{-12+12\sqrt{2}}{18} $
| 2x-125+4x+165=460 | | z/10+30=36 | | -6(2x-1)=54 | | 40/15=48/3x | | 2)с=-2а+b;= | | -9u+27=99 | | 2z-5.8=2.6 | | 4x+165+3x+105=740 | | 17×v=135 | | 2x-125+4x+165=190 | | -31=51+2v | | 3x+105+1x-145=650 | | 10(x-10)=-5(2x+11) | | 4(r+15)=100 | | 2x-125+4x+155=190 | | 3x+4=5-8x | | -2(-3x+29)=-4(-7x-13) | | 3w=2+1/5w | | 3x+105+2x-125=380 | | x(12-2x)(8-2x)=40 | | -3(x+1)=6(-x+3) | | (8y-5)°=99° | | -6.3c-3.52=-6.9c-6.58 | | -2(-2x-99)=2(-6x+3) | | 2x-125+1x-45=190 | | z-83/3=3 | | 3(20)+x=70 | | 4x2+12x=18 | | -44=8-4x | | 39-2x=-5(-3x+16) | | 23=8+y | | -6n+24=36 |