If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+15x=20
We move all terms to the left:
9x^2+15x-(20)=0
a = 9; b = 15; c = -20;
Δ = b2-4ac
Δ = 152-4·9·(-20)
Δ = 945
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{945}=\sqrt{9*105}=\sqrt{9}*\sqrt{105}=3\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-3\sqrt{105}}{2*9}=\frac{-15-3\sqrt{105}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+3\sqrt{105}}{2*9}=\frac{-15+3\sqrt{105}}{18} $
| 3x+2=-5-6 | | 9x-6x=1 | | 9x^+15x=20 | | -3x+2=-5x-6 | | 3(4x–5)=x+7 | | 6x-8=91 | | -8z+11=10-5.5z | | 10-3a=2a-3 | | 5r-9=42 | | 20=2×a | | 7b+3.2b-5=18.92 | | x^-3=13 | | 5x–9=6 | | 4a+21=7 | | 25=-5f | | x+0.20x=4,638 | | х^2+10x+4=0 | | 3^x+4=10 | | x^-14=22 | | 18=2/3h,h=12 | | -5u+40=-9u+48 | | 18=0.75h,h=12 | | 139-7x=76 | | 70=(x+3)(x) | | 3^x-2=90 | | 9p-8p=20 | | -2x+10=1 | | 6x+5=8x+25 | | -3x+36=21 | | -4x+3=-29* | | 25x^2-109x+36=0 | | 81+0x=81 |