If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+27x=0
a = 9; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·9·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*9}=\frac{-54}{18} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*9}=\frac{0}{18} =0 $
| 8^2x=2.2 | | 5x-1+12x+7+57=180 | | -27-19f=-21 | | 2x+Y=8,X-3Y=11 | | 600.00=8x+90 | | 3(1+x)=33 | | 64+x^2=164 | | 4x+3(4x+7)=7x+3-3 | | (4x-3)=(2x-11) | | K+3+7k=5+8k-2 | | 3x+-6=4x+-6 | | -2+28x+98=180 | | x=-5+3/26 | | 6y-3y-4=49.94 | | 229-x=150 | | 4(x+6)+4=6x-6 | | 16x-4x-7x+2x=14 | | 185=-u+77 | | 41.17=9g+3.91 | | y=57.14(-6)+28.57 | | -u+230=46 | | P-58=-7/100q+7/100(100) | | 3y-24=1 | | 8+p=2 | | (3x-44)+(x-24)=189 | | 7(5+5n)=100 | | y=57.14(4)+28.57=257.13 | | x+9=99 | | 2t^2-17t-5=-41 | | 10x-32=4x=34 | | 4x^2+9=-5 | | 5x+3(2x-3)=46 |