If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+3x-2=0
a = 9; b = 3; c = -2;
Δ = b2-4ac
Δ = 32-4·9·(-2)
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*9}=\frac{-12}{18} =-2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*9}=\frac{6}{18} =1/3 $
| 11m-7=7m+17 | | 18=i*9 | | g−7/3=7/2 | | x^2+27x-3=0 | | 2(5x+5)=x+19 | | (x/9)-1=-8 | | (x/4)+6=-12 | | 12x2=192 | | x/3=100/23 | | 6(k+10)=84 | | (x)x6+162=14x-6 | | (x)x6+162=14x(-6) | | 2.4n-13=+5 | | (x)x6+162=6x14-6 | | 7x+5.50x=835 | | 2x+-12=3^x | | (x)x6+162=x14-6 | | -24=x/9 | | 0.5x0.6=8.4 | | -9+c=39 | | (x)x6+162=(x)x14-6 | | O=t+(-1.4) | | 15y=28 | | 3+4m-9=-6m-4+12 | | 3c-4(c-6)=20 | | 12+(x/5)=20 | | 7u/4=21 | | 3n+2/4-n/12=n/3-1 | | 2w+11=45 | | 7x^2+15x-2=34 | | 6=f−30 | | X+4-3x=4-12x |