If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x-17=0
a = 9; b = 4; c = -17;
Δ = b2-4ac
Δ = 42-4·9·(-17)
Δ = 628
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{628}=\sqrt{4*157}=\sqrt{4}*\sqrt{157}=2\sqrt{157}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{157}}{2*9}=\frac{-4-2\sqrt{157}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{157}}{2*9}=\frac{-4+2\sqrt{157}}{18} $
| 17x2-15x-14=0 | | 4x2+2x-16=0 | | 17x2-5x-3=0 | | 17x2+14x-13=0 | | 14x2-17x-7=0 | | 18x2+x+1=0 | | 15x2+3x-6=0 | | 16x2-9x-6=0 | | 10x2-4x-3=0 | | 3x2-8x+12=0 | | 16x2+7x-10=0 | | 5x2-17x-12=0 | | 8x2+3x-4=0 | | 8x2+20x+20=0 | | 4x2-8x-17=0 | | 13x2-18x+15=0 | | 7x2-5x+7=0 | | 4x2+4x+14=0 | | 13x2+3x-6=0 | | x/4=3/2+x | | 15x2+7x+1=0 | | 16x2-9x-9=0 | | 3x2-20x-14=0 | | 2x2+12x-13=0 | | 9x2+3x-5=0 | | 3(7t+5)-2t=4 | | 0.3(5x-7)=3(0.2x-3.2) | | 4(3a)-11=7(2a-5) | | 1x4+4x3-3x2-10x+8=0 | | x4+4x3-3x2-10x+8=0 | | 8x+5=10+3x | | 10x+4=20+5x |