If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x-6=0
a = 9; b = 4; c = -6;
Δ = b2-4ac
Δ = 42-4·9·(-6)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{58}}{2*9}=\frac{-4-2\sqrt{58}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{58}}{2*9}=\frac{-4+2\sqrt{58}}{18} $
| 2x2+9x-7=0 | | 5=5/9(y-32) | | 2(x+4=30) | | x2+6x-5=2 | | 6x+12=2x+10=7 | | 2x+3x+8=6x+-4x+6 | | -5+c=-10 | | 18-15=x | | 8w=8*10 | | 0.5y-16=5 | | -1/3(x-9=-1 | | 5.8÷x=2.9 | | 5y+12=4y+5 | | 8p+5=24 | | w+6=14+6 | | b+18=12 | | 7*n=50-3n | | 8^{3x}=2097152 | | 2(v+4)=6=24 | | 7y=9^2 | | (6x+26)+5x=180 | | 61+5x-15+8x-8=180 | | 10x–55=75 | | (2x-3/7)=(3x-5/10) | | 100=a/13.2 | | 1.4m+4=5.05 | | (7x+23)=(5x+25) | | 0.6x-1.5=4.8 | | 3y/5-y/5=2y/5 | | 3x(4+8)=120 | | 4w=4*9 | | x-1.8=6.9 |