If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+4x=0
a = 9; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·9·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*9}=\frac{-8}{18} =-4/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*9}=\frac{0}{18} =0 $
| 2/5x-1/4x=3/2 | | 56x^2+450x+67=0 | | 5x-4x-10x=19-8 | | 4(x/3)-5=12 | | (3b-3)/2=(b-4)/6 | | -1+5x=4x+4 | | 5x-11=6x-14 | | 1/2x-2325=395/100 | | -x+1=-7× | | -3y+21=-8(y-7 | | 5x-11=6x14 | | (x-3)+12=8 | | 4x+9=2(2x+9 | | -18n=198 | | X/2-3x+4=x/3+x/2-10x-32 | | 24x+1=23x+5 | | F(x)=1/4x-2 | | h+1.5=1.5 | | x2+11x-18=0 | | x+23=2x+23 | | 4(u-9)=-8-12 | | 2x2-18=90 | | 8t^2-7t+9=0 | | 3x2+11x=90 | | -6y+17=3y-16 | | 5x=11=6x-14 | | 8t^2+9=7t | | 19/q=3/5 | | 2.13x+4=8.3 | | (-3)^(x-2)=27 | | 3x+2/3=2x+7 | | 10+6a=4a-40 |