If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2+8=53
We move all terms to the left:
9x^2+8-(53)=0
We add all the numbers together, and all the variables
9x^2-45=0
a = 9; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·9·(-45)
Δ = 1620
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1620}=\sqrt{324*5}=\sqrt{324}*\sqrt{5}=18\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{5}}{2*9}=\frac{0-18\sqrt{5}}{18} =-\frac{18\sqrt{5}}{18} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{5}}{2*9}=\frac{0+18\sqrt{5}}{18} =\frac{18\sqrt{5}}{18} =\sqrt{5} $
| 3^(14x)=3^(9x+3) | | 6(3z-2+4(z-5)=78 | | 4(5y+3)-3(3y+1)=27 | | x+x(0.05)=270 | | 15x^2+11x-2=0 | | 2/3+5a/4=19/6 | | 15x²+11x-2=0 | | 3k(2)+4k+1=0 | | 7^-x-10=17^-10x | | xˆ2+12=62 | | 11-2.5xx=1+1.5xx | | X^4+2x^2+x+2=0 | | 49+b^2=225 | | w-5.38=6.89 | | 4x+2x+1=2x-x+2 | | 3(y-7)-5y=-1 | | 31-3m-(19)=0 | | 9.12/s=24 | | x-0.55x=1296 | | 31-3m=19 | | 31–3m=19 | | 6/8=x/80 | | (1,7);m=1/4 | | (1,8);m=1/2 | | (1,8);m=12 | | 10/x=50/45 | | -1+8x²+18-6x²=-15 | | 3(3p-1)=8p | | -9(-2-1)=-1+2(8r+8) | | 4x+10+3x=4x+31 | | 6v2-12v-58=0 | | -f-10=2(7f+10) |