If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-10x-16=0
a = 9; b = -10; c = -16;
Δ = b2-4ac
Δ = -102-4·9·(-16)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-26}{2*9}=\frac{-16}{18} =-8/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+26}{2*9}=\frac{36}{18} =2 $
| 5x+2=x+11 | | (x+8)=3. | | 6x-(x5)=3x+(x-8) | | 3×=80-2x | | 10x=3,90 | | X-0.09x=195850 | | 7(2x-1)+3(x-7)=6 | | 10x+3+2x=5x–4+6x* | | 3a-14=2a-14÷3 | | 2x/7-3=24 | | X-0.09x=374360 | | 5b+2=30 | | 3g(4g+6)=(6g+9) | | x+x+12+2(x+12)=160 | | -3x2+10x-8=0 | | 2x+x+(2x-4)=26 | | 66=(m+5)6 | | 5y-y+1/2=y-1/4+y | | 4(5-2x)=x-7 | | 4x^2+19x-140=0 | | 2y+6y-y=3 | | 4x²+19x-140=0 | | -1/4x2+3x+1=0 | | 25x2-10x+1=0 | | 8x2-9x+3=0 | | 5x2+25x=0 | | y-12=34 | | 7y=4y+5 | | -1x2+9=0 | | 4.6+x=8.9 | | 6x+4x-26=86 | | x-34=-3.2 |