If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-120x-2025=0
a = 9; b = -120; c = -2025;
Δ = b2-4ac
Δ = -1202-4·9·(-2025)
Δ = 87300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{87300}=\sqrt{900*97}=\sqrt{900}*\sqrt{97}=30\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-120)-30\sqrt{97}}{2*9}=\frac{120-30\sqrt{97}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-120)+30\sqrt{97}}{2*9}=\frac{120+30\sqrt{97}}{18} $
| x^2-36=(x-6)(x+6) | | 5(x-2)=4(2x+) | | 3(x^2-2x-4)=-2(x^2+3x+6) | | (x-4/2)=6 | | 2x(2x)=400 | | 9x=11-8 | | 32(x+3)=45x−8 | | (3x+20)(+2x+80)=180 | | 3x+20=180+2x+80 | | 3x+20=1802x+80 | | 3x+40=x+30 | | -14x+-2=-5x+-18 | | 50=10z-5 | | -20x+20=100 | | x+(x+3)+x=30 | | 2(4x+2)=-3(4x-5) | | (25x-15=) | | 7x-16=36 | | 4(4x+2)=-5(2x-5) | | 2(x-2)-13=-6.2 | | 4(w+4)=36 | | (x+9)^2=169 | | |x+23|=6 | | 1.3x+0.8-x=24 | | 1.3x×(1-0.2)-x=24 | | 11x-x^2=120 | | 11x-x^2=20 | | x-183=28 | | 10x+14=-13x+-15 | | x^2-5x-7/2x=0 | | 1a-a/5=288 | | 1x-20=180 |