If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-12x-19=0
a = 9; b = -12; c = -19;
Δ = b2-4ac
Δ = -122-4·9·(-19)
Δ = 828
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{828}=\sqrt{36*23}=\sqrt{36}*\sqrt{23}=6\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-6\sqrt{23}}{2*9}=\frac{12-6\sqrt{23}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+6\sqrt{23}}{2*9}=\frac{12+6\sqrt{23}}{18} $
| 14x2+11x+8=0 | | 14x2-20x-19=0 | | 17x2-19x-17=0 | | 16x2+9x-6=0 | | 12x2-11x+5=0 | | 2x2+18x-5=0 | | 7x2+18x-19=0 | | 3x=162(+30 | | 12+x+29=89 | | 125+x+30=180 | | x+32.5=50 | | 19x2+17x-10=0 | | 9x2+17x-12=0 | | 18x2-14x-17=0 | | 19x2-15x-12=0 | | 14x2-18x+14=0 | | 4x2+12x-20=0 | | 14x2+5x+9=0 | | 8x2-x-19=0 | | -15x=12.6+3x | | 42/6=x/5 | | 6x2+13x-14=0 | | 13x2+4x+4=0 | | 14x2-x-11=0 | | 15x2+2x+1=0 | | 4x2+20x-3=0 | | 14x2+12x+17=0 | | 14x2+5x-18=0 | | 7x2-19x+13=0 | | 7x2-17x-20=0 | | 12f-14=41 | | 12x/2=36 |