If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-18=0
a = 9; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·9·(-18)
Δ = 648
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{648}=\sqrt{324*2}=\sqrt{324}*\sqrt{2}=18\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{2}}{2*9}=\frac{0-18\sqrt{2}}{18} =-\frac{18\sqrt{2}}{18} =-\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{2}}{2*9}=\frac{0+18\sqrt{2}}{18} =\frac{18\sqrt{2}}{18} =\sqrt{2} $
| 34(12b−9)+b4=5−3(2−3b) | | -45=-63-9x | | 7x-5=2x=6 | | 0.5p-6.45=-1.2 | | -1.5=3w+6 | | 6.5/v=3/11/7 | | 6.5/v=11.7 | | 2x-11=5x+16 | | 6•x/2=19 | | 4x+8+4x+8=180 | | 7x-34=20 | | 4n–3=2n+7 | | 5/8x=64 | | d/3−9=−12. | | 7x+5=9x-35 | | -3/2n=-69/20 | | 4+6r=3r-8 | | 3x-8-2=5x+12-20 | | 8x(3x6)= | | X^3-3^x=-1 | | -9.3=d-3.4= | | 10q+17=17 | | -3x^2+9=252 | | 11x-5x+2=20-x+10 | | (10/6)c+4/12=P | | (x-24)=-6(x+5) | | −2/3(15x+3)=−3x−9 | | x2−6x−24=0 | | 5k −5=6 | | 1/2(4x+6)-7=28 | | 2(x+(-16)=32 | | k/5−5=6 |