If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-20=3x
We move all terms to the left:
9x^2-20-(3x)=0
a = 9; b = -3; c = -20;
Δ = b2-4ac
Δ = -32-4·9·(-20)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-27}{2*9}=\frac{-24}{18} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+27}{2*9}=\frac{30}{18} =1+2/3 $
| -20-p=11 | | k/2+3=35 | | 40+4x=248 | | 12x+x2=-12 | | 31/5x-6=180 | | 7j−2=6j | | 26-2y=-96 | | 2(3m+4)=40+2m | | 4+6x=50 | | Y=4×+19y=-8×-17 | | 3a-6=5-2a | | 3x-28+x+80=180 | | 16-2y=14.5 | | F(x)=10x-1/3-5x | | 5n-3=18-2n | | 2/3*z=1/6 | | 20t^2-11t-3=0 | | t/6/7=7/10 | | 4(2r+3)=15r-11 | | j+1/5=4/10 | | 5-3(2x-7)=14-6x | | 8v2+3v−1=0 | | 38=3w | | 7,5+x-20=2,5 | | m-2.3=0.7 | | 4(3x+2)-x=-3 | | 4(3x+2)-x=3 | | x+5=-2x-4/5 | | 3n^2+31n-60=0 | | C=5+q2 | | 72−x+x4=−2x+33 | | 1/9=-5n+1/12n-12 |