If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-35=0
a = 9; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·9·(-35)
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{35}}{2*9}=\frac{0-6\sqrt{35}}{18} =-\frac{6\sqrt{35}}{18} =-\frac{\sqrt{35}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{35}}{2*9}=\frac{0+6\sqrt{35}}{18} =\frac{6\sqrt{35}}{18} =\frac{\sqrt{35}}{3} $
| 11x-23=4x+19 | | 17x+14=4x-2= | | 6x-5=5(5x+2 | | -2x-7=80 | | 8x+5+2x=45 | | 4=x/10+9 | | 5^x=59049 | | x(1.25)=9 | | 7(10a+9)+7=2a-338 | | f-4/7=9 | | -12x=-3x+18 | | F(-5)=4x^2+6x+2 | | x*5=-10 | | x+x-2+x-4=215 | | n=72+8 | | 1/2x+20=1/4x-6 | | 200-12/50=h | | xx5=-10 | | 2(x+1)+5=-2/3(x+1 | | 40x(48-40)1.5x=660 | | d+-18=43 | | S=5t | | 2x100=7x | | x=48−2x | | 8(2x+2)=48 | | 100=0.55x+25 | | 15x+10=5x+60 | | 8(k-81)=64 | | 4/5+h=9 | | ?+2=3(x-2) | | 2^5-3x=16 | | 4x-2x+7=15 |