If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-5x=0
a = 9; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·9·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*9}=\frac{10}{18} =5/9 $
| 5x2+8x–23=0 | | -(-2x-2)=2(-2x) | | 7+(3*x)=2-(2x-14) | | 16-(5x+8)=3x | | 2(x+7)+5=3 | | x+(x*1/100)=500 | | 12.25l+5=62.5 | | 9r+9=18 | | 12.25f+5=62.5 | | w/4+7=7 | | 10h+14=86 | | 5(2k+1)=3 | | 55+19.50m=250 | | 10x-13x=18 | | 2(x-4)+2x=x+4(x-2) | | 4x^2/25-1/25=0 | | f/4+66=75 | | k/6+-18=-13 | | 20+25x=175 | | (3x+2)+(x+3)+(2x+1)=18 | | h/8+38=47 | | 10x-15=3(3x-3) | | 2x^/9-1/50=0 | | j/6+35=43 | | j/6+34=43 | | 10x-15/3+3=3x | | x5−1=10 | | -2(w-58)=-70 | | 2(3r-5)=14 | | 8k-20=4 | | Z+3z+25=124 | | s/3-2=5 |