If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-72=0
a = 9; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·9·(-72)
Δ = 2592
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2592}=\sqrt{1296*2}=\sqrt{1296}*\sqrt{2}=36\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36\sqrt{2}}{2*9}=\frac{0-36\sqrt{2}}{18} =-\frac{36\sqrt{2}}{18} =-2\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36\sqrt{2}}{2*9}=\frac{0+36\sqrt{2}}{18} =\frac{36\sqrt{2}}{18} =2\sqrt{2} $
| 7(x+7)=-77 | | 2x²+7x-3=0 | | -19=n/13 | | 6.5x+3-5.5x=0 | | 14z^2-14z=28 | | 2x+10-15+3x=15 | | 2=5+a | | 103=-2(7n+6)+3 | | 7(-3n+8)+2=184 | | 145=5(7n+8) | | x2+2x+4=0 | | 20=-8+7x | | 2(-9+x)=-24 | | -1=x-3/18 | | 8+r/6=4 | | -5(3+n)=75 | | 5+r=-13 | | -19=m-17 | | 3x/2-x+1/4=8 | | 2x^2+105x+50=0 | | 1.4^x-20=0 | | X2+8x-448=0 | | 6t-2+5t+12=-1 | | -3k²+16k-5=0 | | X(x+8)=448 | | 15=-9+8k | | 2x–4(7x-3)=2(4+3x) | | x+52=3 | | 1x2−4=9 | | -8x+x+15=-7x12 | | 3960=42y^2+y | | x²-2x-40=0 |