If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-8x-20=0
a = 9; b = -8; c = -20;
Δ = b2-4ac
Δ = -82-4·9·(-20)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-28}{2*9}=\frac{-20}{18} =-1+1/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+28}{2*9}=\frac{36}{18} =2 $
| -3=j+2/4 | | 5(4-3x)=200 | | -w/3+2=5 | | -5=-2t+9 | | 11x+9-6x=14x-18 | | x=55x–〖0.5x〗^2 | | 7x2-27x+4=0 | | 5(-10+2x)=10 | | x2-6.5x+64=0 | | 3x^2-105=-30 | | 2(8+(x)=136 | | -3x-4=-9+2x | | (3x−4)/3=5x+7 | | 49+15=8x | | -3x+1=(x+13)/2 | | 8,5+x=13 | | 6(-6+2x)=-36 | | 3(3x+2)=8x-4 | | 5(4x+4)=-180 | | 50x+5=15x+12 | | 50x+5x=15x+12x | | (4w+3)(8+w)=0w= | | 7(7+6x)=553 | | -7=4+u | | (x-30)(x+50)=180 | | -2x+5=6x+3 | | 5^x+14=28 | | 2(2x-4)=-8x+4 | | 22.5-1.5x=5+4x | | n-4n+7=-20 | | 3(x-16)=-2(x-3)+2 | | 16s-13s=-15 |