If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2=36
We move all terms to the left:
9x^2-(36)=0
a = 9; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·9·(-36)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-36}{2*9}=\frac{-36}{18} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+36}{2*9}=\frac{36}{18} =2 $
| -29+3p=529-6pp=5 | | 24x18=180 | | (b-6)^2+(b)^2=3 | | F(x)=4/x-1 | | 2-5k^2=-29 | | 2z/3+7=11/2 | | x2-12=613 | | F(x)=x/x^2+5x-36 | | 2x2-3=239 | | 7x-36=-3-6(-3-4x) | | 6/v=-8 | | -2b+15=2b(b-6)^1/2 | | 7/15x+3=3/5 | | 1/(1.3x-1.3)=2.1 | | X(x+2)^2(x+5)+x(x+2)^3=0 | | 2x2+2=20 | | (u+5)^2=2u^2+14u+13 | | x2-6=30 | | 3/2x-1=1.4 | | x3=50 | | -6x+4(X+2)=-10 | | x2+19=100 | | 7x-5x=8x | | x2+10=35 | | 3/2x1=1.4 | | 2y+278=2680 | | x^2-22=42 | | F(x)=24x^2+6x/2x+1 | | 6x-36=2x=-4 | | 6x-36=2x−4 | | Y=-x2-6x-9 | | 4(q+2)+3q=-20 |