If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-100=0
a = 9; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·9·(-100)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-60}{2*9}=\frac{-60}{18} =-3+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+60}{2*9}=\frac{60}{18} =3+1/3 $
| 3(t-3)=2(t-1) | | 7/3+x=1.5 | | 3x-5=20x+12,x=2 | | 21/4x=8/9 | | 2+x=9;x | | 21/3+x=1.5 | | 5x+6=-14;x | | (2x+7)+65=90 | | (2x+7+65=90 | | 5+2(x+6)=20-x | | x+20=3x+20 | | 3(X+1)=9(x-4) | | 3x-2(5x+1)-7=2x+(3-x) | | 34-x+12/7=42/16-5 | | 6/x=9/4 | | 2*x+4=12 | | 4n-8/2=8 | | Y²-3=6y-3 | | 2(x+2)+8=16 | | 4(x+2)+5=21 | | 7(x+1)-6=22 | | 5x+7=4+21 | | 3(x+9)=5(4+9) | | 3x+22=-16 | | (2x+16)+136=180 | | (2x+16)°+136=180 | | 5b+12=8 | | 5b+7=8 | | 12-3c=13 | | 7w+3=2(w-1) | | 3x-2/5-3=8 | | x-2+3x=4+5x-7 |