If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-16=0
a = 9; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·9·(-16)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*9}=\frac{-24}{18} =-1+1/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*9}=\frac{24}{18} =1+1/3 $
| 0=-2x^+7x-3 | | 0=x^+5x+6 | | {4X+6y=28 | | 3(2x+5)+-2(4+4x)=7 | | x^+12x=2 | | (Y)(8y)÷2=64 | | 4/5-12/x=0 | | 8^x=9^x+9 | | 2(4z=3)-8=46 | | 2(y-5)=21-(6-7y) | | 9d+11=8 | | 7-8x-2=-54+4x-13 | | 9y+3=-2y+14 | | -7y+15=15 | | x-5/6=7/x+5 | | -7y15=15 | | 7(x-2)=11x+10 | | (s-6)^2=75 | | 2-c=5c-16 | | 4(x+2)=4(+5) | | x+x+(x+18)=76 | | 20x-4x=9 | | 0.12^(t)=0.5 | | 4u-30=6(u-8) | | 8/b=4/10 | | (4y+1)/3=(y+3)/2 | | -7(v-5)=-4v+47 | | 3x-15=-3(x+9) | | (1/2q+1)=-3(2q+1)+4(2q+1) | | 2u+2(u+6)=-4 | | 2(y-6)+7y=-3 | | -32=4(w+8)+4w |