If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z+(z+2)=10+z2
We move all terms to the left:
9z+(z+2)-(10+z2)=0
We add all the numbers together, and all the variables
-(+z^2+10)+9z+(z+2)=0
We get rid of parentheses
-z^2+9z+z-10+2=0
We add all the numbers together, and all the variables
-1z^2+10z-8=0
a = -1; b = 10; c = -8;
Δ = b2-4ac
Δ = 102-4·(-1)·(-8)
Δ = 68
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{68}=\sqrt{4*17}=\sqrt{4}*\sqrt{17}=2\sqrt{17}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{17}}{2*-1}=\frac{-10-2\sqrt{17}}{-2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{17}}{2*-1}=\frac{-10+2\sqrt{17}}{-2} $
| 6p/7=12/5 | | 11x–6=7x-4 | | 6) 11x–6=7x-4 | | –6x2+13x+5=0 | | 3(3x–2)-7(x–2)=10 | | 6x+5-4x=6+2x | | 6–7x=3-5x | | 34+34+x+49=139 | | 2x^2-9=x^2+50 | | 5x+4x24x+25=139 | | 19x+5=18x+9 | | (0.075-x)=0.045 | | (5x+4)(4x+25)=139 | | 0.075-x=0.045 | | 1+2u=32 | | x+x*6=45 | | 3x-5+2x-19+x=180 | | 1+2u=3u | | 3k+8=88 | | 9+5=5u | | 3y+7=43-3y | | 52x+47=46 | | 3y+7=43-7 | | 6+3+2=4v | | x^2-85x-400=0 | | 4+4z=16 | | 153y=2 | | 0.707=x/24 | | Ax3=9 | | A=45+2a | | 15^3y=2 | | 2x+7=x+3+x |