If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2+6z-15=0
a = 9; b = 6; c = -15;
Δ = b2-4ac
Δ = 62-4·9·(-15)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-24}{2*9}=\frac{-30}{18} =-1+2/3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+24}{2*9}=\frac{18}{18} =1 $
| 8x+7=10x+18 | | 17w-9=2 | | 5(3^2x)+6=31(3^x) | | X²-x=56 | | 5(32x)+6=31(3x) | | 20x-10=30,x | | 8c+10=15 | | 11-r3=-7 | | 0.48(60+0.08x=0.24(36=x) | | -2-(1+7x)=-5(4-2x | | 12k2+15k=16k+20 | | 5m+19=-19+15m-2 | | 8q2-10q+3=0 | | 11+14t=3t | | 13•x=42 | | -7-15j=-13j-19 | | 8a2-16a=6a-12 | | 4g-3=g+9 | | -(1+3x)=-2(x+8) | | 4c-3c=36 | | 3+10m=m+9+10m | | 1x-51=3 | | 10c2-21c=-4c+6 | | 5u-4=4u | | -9+4z=3+2z | | 3(x-10)-5=32x-151 | | 12x2-1=-x | | 5r=9r+8 | | 10-8g=-1+3g | | 2x–7x+1+1=-2x+7x+1 | | 6y2=-7y-2 | | x^+49=-14x |