If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9z^2-18z=1
We move all terms to the left:
9z^2-18z-(1)=0
a = 9; b = -18; c = -1;
Δ = b2-4ac
Δ = -182-4·9·(-1)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{10}}{2*9}=\frac{18-6\sqrt{10}}{18} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{10}}{2*9}=\frac{18+6\sqrt{10}}{18} $
| (5x-4=4x-2) | | 7x=x+49 | | 2/4x=-2/3 | | 150-6x=120-3x | | x^2=10x^2-70x+100 | | 2(8z-11)+5=16z+2 | | 9x-3x(2x+4)=9 | | 9z2−18z=1 | | -3(x-10)=36 | | 3b=2.4 | | -3=-25-2(c+1)-3c | | 9x^2-70x+100=0 | | 7y=42+7 | | 84=x-7 | | 16n+7-8n=31 | | n=12=35/84 | | 23=x/6-17 | | 27(w-957)=243 | | 12-18p=6(-3p+2) | | 99=3(h−60) | | 4(5x3+)-8x=12x-2(x-4) | | 14+3x=2-3x | | x2+18x+97=0 | | 3x=-5x-12 | | 15+16c=991 | | 23=x/6-7 | | 6y-7=89 | | (x-10)(2x+21)=-195 | | x2+18x+97=0x2+18x+97=0 | | 18=270/q | | 17-19g-13=12-19g | | 48-s=42 |