If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = (x + y)(x + y)(x + y) Multiply (x + y) * (x + y) 0 = (x(x + y) + y(x + y))(x + y) 0 = ((x * x + y * x) + y(x + y))(x + y) Reorder the terms: 0 = ((xy + x2) + y(x + y))(x + y) 0 = ((xy + x2) + y(x + y))(x + y) 0 = (xy + x2 + (x * y + y * y))(x + y) 0 = (xy + x2 + (xy + y2))(x + y) Reorder the terms: 0 = (xy + xy + x2 + y2)(x + y) Combine like terms: xy + xy = 2xy 0 = (2xy + x2 + y2)(x + y) Multiply (2xy + x2 + y2) * (x + y) 0 = (2xy * (x + y) + x2(x + y) + y2(x + y)) 0 = ((x * 2xy + y * 2xy) + x2(x + y) + y2(x + y)) Reorder the terms: 0 = ((2xy2 + 2x2y) + x2(x + y) + y2(x + y)) 0 = ((2xy2 + 2x2y) + x2(x + y) + y2(x + y)) 0 = (2xy2 + 2x2y + (x * x2 + y * x2) + y2(x + y)) Reorder the terms: 0 = (2xy2 + 2x2y + (x2y + x3) + y2(x + y)) 0 = (2xy2 + 2x2y + (x2y + x3) + y2(x + y)) 0 = (2xy2 + 2x2y + x2y + x3 + (x * y2 + y * y2)) 0 = (2xy2 + 2x2y + x2y + x3 + (xy2 + y3)) Reorder the terms: 0 = (2xy2 + xy2 + 2x2y + x2y + x3 + y3) Combine like terms: 2xy2 + xy2 = 3xy2 0 = (3xy2 + 2x2y + x2y + x3 + y3) Combine like terms: 2x2y + x2y = 3x2y 0 = (3xy2 + 3x2y + x3 + y3) Solving 0 = 3xy2 + 3x2y + x3 + y3 Solving for variable 'x'. Remove the zero: -3xy2 + -3x2y + -1x3 + -1y3 = 3xy2 + 3x2y + x3 + y3 + -3xy2 + -3x2y + -1x3 + -1y3 Reorder the terms: -3xy2 + -3x2y + -1x3 + -1y3 = 3xy2 + -3xy2 + 3x2y + -3x2y + x3 + -1x3 + y3 + -1y3 Combine like terms: 3xy2 + -3xy2 = 0 -3xy2 + -3x2y + -1x3 + -1y3 = 0 + 3x2y + -3x2y + x3 + -1x3 + y3 + -1y3 -3xy2 + -3x2y + -1x3 + -1y3 = 3x2y + -3x2y + x3 + -1x3 + y3 + -1y3 Combine like terms: 3x2y + -3x2y = 0 -3xy2 + -3x2y + -1x3 + -1y3 = 0 + x3 + -1x3 + y3 + -1y3 -3xy2 + -3x2y + -1x3 + -1y3 = x3 + -1x3 + y3 + -1y3 Combine like terms: x3 + -1x3 = 0 -3xy2 + -3x2y + -1x3 + -1y3 = 0 + y3 + -1y3 -3xy2 + -3x2y + -1x3 + -1y3 = y3 + -1y3 Combine like terms: y3 + -1y3 = 0 -3xy2 + -3x2y + -1x3 + -1y3 = 0 Factor out the Greatest Common Factor (GCF), '-1'. -1(3xy2 + 3x2y + x3 + y3) = 0 Ignore the factor -1.Subproblem 1
Set the factor '(3xy2 + 3x2y + x3 + y3)' equal to zero and attempt to solve: Simplifying 3xy2 + 3x2y + x3 + y3 = 0 Solving 3xy2 + 3x2y + x3 + y3 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 45+45+y=180 | | 5w^2-16w+12=0 | | 6x+2=2x+6 | | 6=3(x+2) | | 7w-13w+8w= | | y=-x^2-10x-20 | | -8+10= | | 2[2x+2(y-2)]-1=2x-3y-3(y-8) | | 9x+8+6x+7=180 | | 4x+6= | | (2-5i)-(3+4i)= | | 5(8x+4)= | | -5+17= | | 2x+37=7x+7 | | (4+2i)-(-1+i)= | | 3r^2t^2+[4rt^2-(-6r^2t^2-9rt^2)]= | | 2m^2-6m-15=0 | | 5x+6y-11+8x-12y+14= | | -10(x-4+9)+x+3(x-8)=-41+25 | | 4a+5b-6a+7b= | | -6-8c=3c-16 | | 2x+x=185 | | -14x^2+45x+14=0 | | -(3a-2b)-3(b-a)= | | 5x+10y=185 | | 3x+10=26 | | -(2x-3)-3-2x= | | 7-10x=94-31x | | (5x+7)+(x+6)= | | p-8-7=12 | | (3x-1)(9x+7)=0 | | (4*a*a*a+a-9)-(8-9*a*a*a-9*a*a)= |