A(n)=189+(n-1)10

Simple and best practice solution for A(n)=189+(n-1)10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A(n)=189+(n-1)10 equation:



(A)=189+(A-1)10
We move all terms to the left:
(A)-(189+(A-1)10)=0
We calculate terms in parentheses: -(189+(A-1)10), so:
189+(A-1)10
determiningTheFunctionDomain (A-1)10+189
We multiply parentheses
10A-10+189
We add all the numbers together, and all the variables
10A+179
Back to the equation:
-(10A+179)
We get rid of parentheses
A-10A-179=0
We add all the numbers together, and all the variables
-9A-179=0
We move all terms containing A to the left, all other terms to the right
-9A=179
A=179/-9
A=-19+8/9

See similar equations:

| (x+5)=23 | | 5(y-1)=2(y+3) | | (x-5)=23 | | 8-4(w+4)=10 | | {2n+5}=11 | | -13p=-6-7p | | 3/4x16-9=-3 | | 4x^2-132x+272=0 | | 8+-4(w+4)=10 | | 5(2x+3)=70 | | 5/4x=-5 | | x^2+20x+84=100 | | 7x-11-4x=6x | | -12=4+p | | -12=-4+p | | 12=-4+p | | 172y/y=7 | | 42=4-2(x) | | 4/x+1+1/x-1=32/x^2-1 | | 2(k-15)=76 | | 12=4+p | | (x^2-3x+8)(-x^2+3x-6)=3 | | 33-(-2)h=3 | | x^2-15x=2x | | 3a÷5a=2a | | 1/3m-5=-6 | | -3x+7=(-4x-6) | | 33/8=n-6 | | D=0.15t | | y=7/8 | | 5.60x+2.30=3.29*10 | | Y-3(c+38)=-30 |

Equations solver categories