If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=(1-A)(6A-8)+16-9A
We move all terms to the left:
(A)-((1-A)(6A-8)+16-9A)=0
We add all the numbers together, and all the variables
A-((-1A+1)(6A-8)+16-9A)=0
We multiply parentheses ..
-((-6A^2+8A+6A-8)+16-9A)+A=0
We calculate terms in parentheses: -((-6A^2+8A+6A-8)+16-9A), so:We get rid of parentheses
(-6A^2+8A+6A-8)+16-9A
determiningTheFunctionDomain (-6A^2+8A+6A-8)-9A+16
We get rid of parentheses
-6A^2+8A+6A-9A-8+16
We add all the numbers together, and all the variables
-6A^2+5A+8
Back to the equation:
-(-6A^2+5A+8)
6A^2-5A+A-8=0
We add all the numbers together, and all the variables
6A^2-4A-8=0
a = 6; b = -4; c = -8;
Δ = b2-4ac
Δ = -42-4·6·(-8)
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{13}}{2*6}=\frac{4-4\sqrt{13}}{12} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{13}}{2*6}=\frac{4+4\sqrt{13}}{12} $
| 5x-32=5x-4(x+8) | | 3r+2=15r+6 | | 5/3x-2.5x-25/3+1.5=4-3x | | 210/(3-x)=150 | | -2x-2=x+64 | | 3(3+2x)-1=38 | | 3+5r-1=6r+4-2r | | 38•x=24,396 | | -(3-5n)=-10-2n | | 3x-2(5x-8)=9-4(3x+7) | | 6x-10x=0 | | -5x-24=-109 | | 7/3n-7/2n=-7/4 | | 12x-30=8x-2 | | 2x(5-3x)=(7x-4)-(8x-9) | | 7x÷4=16 | | X+8-2x+6x=40 | | 4(4x+6)+x=80 | | 24/5w=141/5 | | y=10(1+0.4)^4 | | y=10(1+0.4)^6 | | 50x+70+10x=80 | | 6x(2x+1)=-138 | | 27x+x^2-160=0 | | 8=2h-(-3) | | 50x+70+10x=80x | | 50x+20x-(3x-5)=250 | | 3g-(-7.72)=13.72 | | 48x+x^2-720=0 | | 5x+(-2)=60 | | 3/8f+1/2=6(1/16f-3 | | 2x+70=80 |