If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(A)=(A-2)(A+3)+(A-2)(2A-1)
We move all terms to the left:
(A)-((A-2)(A+3)+(A-2)(2A-1))=0
We multiply parentheses ..
-((+A^2+3A-2A-6)+(A-2)(2A-1))+A=0
We calculate terms in parentheses: -((+A^2+3A-2A-6)+(A-2)(2A-1)), so:We add all the numbers together, and all the variables
(+A^2+3A-2A-6)+(A-2)(2A-1)
We get rid of parentheses
A^2+3A-2A+(A-2)(2A-1)-6
We multiply parentheses ..
A^2+(+2A^2-1A-4A+2)+3A-2A-6
We add all the numbers together, and all the variables
A^2+(+2A^2-1A-4A+2)+A-6
We get rid of parentheses
A^2+2A^2-1A-4A+A+2-6
We add all the numbers together, and all the variables
3A^2-4A-4
Back to the equation:
-(3A^2-4A-4)
A-(3A^2-4A-4)=0
We get rid of parentheses
-3A^2+A+4A+4=0
We add all the numbers together, and all the variables
-3A^2+5A+4=0
a = -3; b = 5; c = +4;
Δ = b2-4ac
Δ = 52-4·(-3)·4
Δ = 73
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{73}}{2*-3}=\frac{-5-\sqrt{73}}{-6} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{73}}{2*-3}=\frac{-5+\sqrt{73}}{-6} $
| 5x+4-3x=20 | | x+1+3x+1=9 | | 3x+20)=180 | | 14+m=7 | | (5x-10)=(3x+20) | | 64+2x+4=90 | | -2(3x+1)=4(x-13) | | 2(2x+1)=8x-22 | | 6z-8=z+7 | | 2(x+3)-x=4+3x+8 | | 42=7(x~+5) | | -3(x+3x=) | | 6a-4=a+1 | | -132=-4(1-4x) | | 2(x=7)=4 | | 13x-15=42x+18 | | -132=-4(1-4x | | 4x-5=0,5x+6 | | 3x+6+7=90 | | -84=6(-2x-6) | | 896*x=0.6 | | 5=11-x/2 | | 896/x=0.6 | | 15=75+2x | | 67=-6y+16 | | 21=75+2x | | (X+4)2-8×=x2+16 | | 6d+21=d-24 | | 5/2c=8;1/3 | | 15x-30=50-5x | | X+a+12=3a+12 | | 3/4x=-13 |