A(x)=2x(5-x)-(5-x)x-1

Simple and best practice solution for A(x)=2x(5-x)-(5-x)x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A(x)=2x(5-x)-(5-x)x-1 equation:



(A)=2A(5-A)-(5-A)A-1
We move all terms to the left:
(A)-(2A(5-A)-(5-A)A-1)=0
We add all the numbers together, and all the variables
A-(2A(-1A+5)-(-1A+5)A-1)=0
We calculate terms in parentheses: -(2A(-1A+5)-(-1A+5)A-1), so:
2A(-1A+5)-(-1A+5)A-1
We multiply parentheses
-2A^2+1A^2+10A-5A-1
We add all the numbers together, and all the variables
-1A^2+5A-1
Back to the equation:
-(-1A^2+5A-1)
We get rid of parentheses
1A^2-5A+A+1=0
We add all the numbers together, and all the variables
A^2-4A+1=0
a = 1; b = -4; c = +1;
Δ = b2-4ac
Δ = -42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{3}}{2*1}=\frac{4-2\sqrt{3}}{2} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{3}}{2*1}=\frac{4+2\sqrt{3}}{2} $

See similar equations:

| (2/9)m-1/9=5/72 | | 45+x=8x+5 | | D/8=k | | 3x+5+5x−57=180. | | x√2+7x+12=0 | | 7x+3=8x+0 | | 110/x+6=17 | | -5(2t-2)+7t=8t-5 | | 12/60=x/6 | | 4+1c-12+3c=78 | | 9x+2=4+0 | | x+2x-1+59=180 | | -17+27=-5(x-1) | | 7(2e+3)=3(4e+8) | | 19x-5=10x-14 | | 9x+4=0x+8 | | 9p-p=32 | | 10(c+3)=16 | | -5(x+1)+3(4x-7)=6(x-5)+8 | | 9x+3=0x+6 | | x-5÷4=-6 | | 9z+4-z=1+7z+8 | | 1/3(6-15x)=3/8(40x-8) | | x+6=-5x+7 | | 4+2x=-67 | | 8-(m/4)=16 | | 6d–5=20 | | a/9-4=7 | | 4x+3=0x+6 | | 12x-8-5x=48 | | 0.5y+y/3=0.25y+7​ | | 6.2x-0.7=2.1 |

Equations solver categories