If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+A2=48
We move all terms to the left:
+A2-(48)=0
We add all the numbers together, and all the variables
A^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| n/55=9/11 | | 3x-60=x+50= | | 6=2(r-2)-2 | | 4(1+p)=5 | | 3(u+6)+6=-3 | | 8s=2/1 | | 4x+14-3x=-8+(-10) | | 24-3/7v=27 | | 88=-8(3y+4) | | 0.5s=-1/2 | | 6–a=2 | | 8s=1/2 | | 9x+24=11x | | 4d-3(4-d)=4d- | | 4x+32=x+6+3x+26 | | 19y=-133 | | (1/2x+12)(3/4x+8)=180 | | 14x+6-7x=12 | | 7x-16=12x+3 | | (4x)/(x^2+1)=0 | | 2(7x-3)=6x+21 | | 4x+4x+x=80 | | -4=3+k-7 | | 3/6=5/k | | 4(x+8)=x+6+3x+26 | | 8x-17+19x+4=19x+4+5x-1 | | A(3x+9)=15x+45 | | -5+2/3z=15 | | 2x+5+3x=120 | | 180=(2x+4) | | 2d+6-3D=-18 | | 3=25-3x |