A2+7a2=128

Simple and best practice solution for A2+7a2=128 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A2+7a2=128 equation:



2+7A^2=128
We move all terms to the left:
2+7A^2-(128)=0
We add all the numbers together, and all the variables
7A^2-126=0
a = 7; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·7·(-126)
Δ = 3528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3528}=\sqrt{1764*2}=\sqrt{1764}*\sqrt{2}=42\sqrt{2}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42\sqrt{2}}{2*7}=\frac{0-42\sqrt{2}}{14} =-\frac{42\sqrt{2}}{14} =-3\sqrt{2} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42\sqrt{2}}{2*7}=\frac{0+42\sqrt{2}}{14} =\frac{42\sqrt{2}}{14} =3\sqrt{2} $

See similar equations:

| 3-4m=31 | | r/7+12=17 | | −2x−6−−−−−√=14 | | −2(5y−3)=−10y−6 | | 2/3(k+10)=2/3k | | 16.84=15+3c-5.3 | | 2n-3n+5n-20=-24 | | 6x+3=1000000000000000000000000000000000000000 | | -4=-7+v/11 | | (1-5k)=2k+38 | | 3x−1+x=2x+7 | | 6=s-45/9 | | 5.4g+6=3.4g+10. | | -18=n/11 | | 3x+3(x+5)=57 | | -14.2=-4.2x+6.8 | | d3− 3=1 | | 5x+15=-100 | | 20+17w=⎯6+15w | | 29=-9c-7-3c | | 2(s+20)=88 | | 3(a-4)=6a- | | 5(6-3k)-2k=115 | | -16+4x=8x | | -­8-x+1=­-8x+1 | | 55=5(c+4) | | 2x+6x=6=18 | | 7(c-3)=21 | | 5.3c–3c+15=16.84 | | 7x-248+x+44=90 | | ⎯2u+18=⎯5(u⎯3) | | -3(8+8n)=144 |

Equations solver categories