If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+2+A2=149
We move all terms to the left:
2+2+A2-(149)=0
We add all the numbers together, and all the variables
A^2-145=0
a = 1; b = 0; c = -145;
Δ = b2-4ac
Δ = 02-4·1·(-145)
Δ = 580
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{580}=\sqrt{4*145}=\sqrt{4}*\sqrt{145}=2\sqrt{145}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{145}}{2*1}=\frac{0-2\sqrt{145}}{2} =-\frac{2\sqrt{145}}{2} =-\sqrt{145} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{145}}{2*1}=\frac{0+2\sqrt{145}}{2} =\frac{2\sqrt{145}}{2} =\sqrt{145} $
| ⅔x+2=5 | | 3x*x=4800 | | X^2-y^2=89 | | 1.5-x=2.5 | | 5x2−20x+3=0 | | 4x(2x-5)+8=3x-2 | | 5x=3=x+17 | | 17y-2/3=154 | | -384÷n=-12 | | 2x(x+5)=6x+4 | | (3x+1=3x-8) | | 1/x-1+1/x-2+1/x-3=0 | | 126÷n=(-9) | | 6x-12=14+52 | | 2y+7-y=10 | | X^2-5x+4.5=0 | | 7x+4-2x+3=22 | | (3x+10)°+70°+90°=180° | | x^2-x-2=5x-10 | | 4a+(-15)=13 | | X²-9x²-25=0 | | 3y–7=15 | | 3(2p+5)=4p-8 | | x+(x+2)+(x+4)=990 | | 7x-5=11-5 | | 4x-42=5x-59,6 | | x^2+6x^2+12x+9=0 | | x+(x+2)+(x+4)=128 | | 3•x^2+1=76 | | 2p+5=4p+11 | | 2a+1÷2=3÷2 | | 7x+23=4x |