If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2+A2=16
We move all terms to the left:
2+A2-(16)=0
We add all the numbers together, and all the variables
A^2-14=0
a = 1; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·1·(-14)
Δ = 56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{56}=\sqrt{4*14}=\sqrt{4}*\sqrt{14}=2\sqrt{14}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{14}}{2*1}=\frac{0-2\sqrt{14}}{2} =-\frac{2\sqrt{14}}{2} =-\sqrt{14} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{14}}{2*1}=\frac{0+2\sqrt{14}}{2} =\frac{2\sqrt{14}}{2} =\sqrt{14} $
| 18x+36/3=-4(4-2x) | | -45/15=x/100 | | -(x+5)=16 | | 3c-15=9 | | x=0.3x^2-12x+200 | | -2(x+6)=-31 | | 1/2(58+5+x)=4x | | 12/7=k/8 | | 49=-7x+-7 | | -21/4v=11/40 | | x/5=98 | | 6r-5r=19 | | 63+x=4x | | p/2=5/8 | | (0.5)^2x=4.6 | | 8h-5h=15 | | |3x+4|=13 | | 8h−5h=15 | | 62-2=6-10x | | 5n-10=45 | | 4w=4800 | | -2(2x-3=-2 | | 7m*3=10 | | 7+2n=126-36n | | 6s–65=7s–79 | | 2x-99=x-29 | | 5/9=8/x+1 | | 2x-99=x | | 480=6x-420 | | 9w=5w-70 | | 6x-24+6x+24=180 | | 4^-5x=9^x-7 |