A=(150+3x)(300+3x)

Simple and best practice solution for A=(150+3x)(300+3x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(150+3x)(300+3x) equation:



=(150+3A)(300+3A)
We move all terms to the left:
-((150+3A)(300+3A))=0
We add all the numbers together, and all the variables
-((3A+150)(3A+300))=0
We multiply parentheses ..
-((+9A^2+900A+450A+45000))=0
We calculate terms in parentheses: -((+9A^2+900A+450A+45000)), so:
(+9A^2+900A+450A+45000)
We get rid of parentheses
9A^2+900A+450A+45000
We add all the numbers together, and all the variables
9A^2+1350A+45000
Back to the equation:
-(9A^2+1350A+45000)
We get rid of parentheses
-9A^2-1350A-45000=0
a = -9; b = -1350; c = -45000;
Δ = b2-4ac
Δ = -13502-4·(-9)·(-45000)
Δ = 202500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{202500}=450$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1350)-450}{2*-9}=\frac{900}{-18} =-50 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1350)+450}{2*-9}=\frac{1800}{-18} =-100 $

See similar equations:

| -1a-10=-2 | | 180=-10(-9+k) | | 18x-18=33 | | (3x+13)(8x+14)=180 | | 5x-12+3x-2=180 | | 1.5(x+20)=0.5(3x+60) | | 8/x=24/39 | | 6x-246=-10x+74 | | 2x-4(2x-3)=18 | | X7x-17=4x+1 | | -2x+10=2x-2 | | F(x)=-x²+5x-6 | | 3-2(5+4x)=27 | | `-2x+10=2x-2` | | 6x²+7x—15=0 | | -5x+3(6+7x)=34 | | 4x+56=12 | | -7x+6+3x=14+4x | | 2/4x+17=36* | | x³-x-190=0 | | /2/4x+17=36* | | 66+3x=(6x+12) | | -1x-10=24 | | x+2/2x-1=1 | | 7.4+t=3.29 | | 17x-18=-306 | | 10-7b=24 | | x72=3 | | 10-7b=224 | | 6X+2(x-3)=15 | | -t/7+9=15 | | 10x+8-12x=4 |

Equations solver categories