A=(2x+1)(x-5)+10x-1

Simple and best practice solution for A=(2x+1)(x-5)+10x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(2x+1)(x-5)+10x-1 equation:



=(2A+1)(A-5)+10A-1
We move all terms to the left:
-((2A+1)(A-5)+10A-1)=0
We multiply parentheses ..
-((+2A^2-10A+A-5)+10A-1)=0
We calculate terms in parentheses: -((+2A^2-10A+A-5)+10A-1), so:
(+2A^2-10A+A-5)+10A-1
We get rid of parentheses
2A^2-10A+A+10A-5-1
We add all the numbers together, and all the variables
2A^2+A-6
Back to the equation:
-(2A^2+A-6)
We get rid of parentheses
-2A^2-A+6=0
We add all the numbers together, and all the variables
-2A^2-1A+6=0
a = -2; b = -1; c = +6;
Δ = b2-4ac
Δ = -12-4·(-2)·6
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-7}{2*-2}=\frac{-6}{-4} =1+1/2 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+7}{2*-2}=\frac{8}{-4} =-2 $

See similar equations:

| 0.5(x)+1=0.25(x)-4 | | 16^3x=4^x+2 | | -21=1-11n | | 5-2x+2=13 | | |x-5|+4=13 | | 9^4x=91 | | 24=18+b | | 2/3(n+3=12 | | 165-0.75a=135 | | −32−38r=−14 | | 3x−2x=20 | | 6=n/5+9 | | 5−2x+2=13 | | 79=6(-6a×5) | | 10x2=24 | | 18+5x=54 | | (5x-12)=(3x+28) | | p-14.4=-0.6p | | 5y-3=8y+8 | | -x^2-3x=8 | | 7x+5+14x=70 | | 17.01-y=6.3 | | 7i-2+i=9+5i+10 | | 79=6(6a5 | | 2.5*x=34 | | 8x+4−3x=19 | | -34=8n-2 | | 6x+(6+4x)-8=18 | | 4(m-0.45)=9.2 | | x/2+2/3=x/3-2/3 | | 25=17+a | | 7.2k+79.8=15.6k |

Equations solver categories