A=(30+2x)*(20+2x)

Simple and best practice solution for A=(30+2x)*(20+2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(30+2x)*(20+2x) equation:



=(30+2A)(20+2A)
We move all terms to the left:
-((30+2A)(20+2A))=0
We add all the numbers together, and all the variables
-((2A+30)(2A+20))=0
We multiply parentheses ..
-((+4A^2+40A+60A+600))=0
We calculate terms in parentheses: -((+4A^2+40A+60A+600)), so:
(+4A^2+40A+60A+600)
We get rid of parentheses
4A^2+40A+60A+600
We add all the numbers together, and all the variables
4A^2+100A+600
Back to the equation:
-(4A^2+100A+600)
We get rid of parentheses
-4A^2-100A-600=0
a = -4; b = -100; c = -600;
Δ = b2-4ac
Δ = -1002-4·(-4)·(-600)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-100)-20}{2*-4}=\frac{80}{-8} =-10 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-100)+20}{2*-4}=\frac{120}{-8} =-15 $

See similar equations:

| 54n^2-12n=42 | | 88x=144 | | 27.48=p–28 | | 3p^2+26p+35=0 | | 5^x=125x^-2 | | 1/3=x=150,000 | | 3/4xX=50 | | 46=(3x-12)+(5x+18) | | 5(6x+6=30x+30 | | 2.5-5(1+4d)=-25.5 | | 2x(x-3)-4=(4x-1)/3 | | 3/4x-18=32 | | 3.5b+8b=24.5 | | 75+12x=20+x | | 241=-v+284 | | 1/4=x=6 | | 2(x+1=-4 | | -8u+36=-2(u+6) | | -4(x-8)=-2x+24 | | 20x^2+7=3x^2-13 | | 4x-2/5=2 | | 3u-39=9(u+1) | | 245-x=96 | | w^2+6w-41=0 | | 1/4×x=6 | | 237=126-w | | 43​=m+41​ | | 8x+8=3x+30 | | 0=x^2+4x+91 | | x^2-((5/2)x)+(25/16)=(36/16) | | 30+(2x-30)=x | | —6+4x/4+1+x/20=5x+2/5 |

Equations solver categories