A=(3x-7)(4x+5)+(3x-7)2

Simple and best practice solution for A=(3x-7)(4x+5)+(3x-7)2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=(3x-7)(4x+5)+(3x-7)2 equation:



=(3A-7)(4A+5)+(3A-7)2
We move all terms to the left:
-((3A-7)(4A+5)+(3A-7)2)=0
We multiply parentheses ..
-((+12A^2+15A-28A-35)+(3A-7)2)=0
We calculate terms in parentheses: -((+12A^2+15A-28A-35)+(3A-7)2), so:
(+12A^2+15A-28A-35)+(3A-7)2
We multiply parentheses
(+12A^2+15A-28A-35)+6A-14
We get rid of parentheses
12A^2+15A-28A+6A-35-14
We add all the numbers together, and all the variables
12A^2-7A-49
Back to the equation:
-(12A^2-7A-49)
We get rid of parentheses
-12A^2+7A+49=0
a = -12; b = 7; c = +49;
Δ = b2-4ac
Δ = 72-4·(-12)·49
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2401}=49$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-49}{2*-12}=\frac{-56}{-24} =2+1/3 $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+49}{2*-12}=\frac{42}{-24} =-1+3/4 $

See similar equations:

| 0.25x+0.6(250-x)=25 | | 0.4x+0.6(250-x)=25 | | 0.4x+0.25(250-x)=25 | | 0.1x+0.25(250-x)=25 | | 28x2-32x+1=0 | | 0.1x+0.4(250-x)=25 | | 0.15x+0.6(250-x)=25 | | 0.15x+0.25(250-x)=25 | | x-8/4+x+5/5=6+x+2/11 | | 0.15x+0.4(250-x)=25 | | 32x2-32x+1=0 | | X+18=18-x | | 0.15x+0.1(250-x)=25 | | 4/12=x/60 | | X^2+7x+14=180 | | 2x+4=-x+28 | | Y2x+4=-x+28 | | 36n2+28n-4000=0 | | 10w-4w=12 | | (3x+10)=6x-20) | | -8x^2+40x+15=0 | | 4x=0.4738 | | 3-5(x+2)=3(5x-3)+5 | | 10x+3=7x-2 | | 7v-3v=16 | | 6w-2w=20w | | 4y+2y=12y | | 6(x)=5^2 | | 14x-6x=64 | | 3/4+2(x-3/6)=3x-4/10 | | -6x+3=2x-5 | | x-4=4x+14÷6 |

Equations solver categories