A=3(2-4K)+k2

Simple and best practice solution for A=3(2-4K)+k2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for A=3(2-4K)+k2 equation:



=3(2-4)+A2
We move all terms to the left:
-(3(2-4)+A2)=0
We add all the numbers together, and all the variables
-(3(-2)+A2)=0
We calculate terms in parentheses: -(3(-2)+A2), so:
3(-2)+A2
determiningTheFunctionDomain A2+3(-2)
We add all the numbers together, and all the variables
A^2-6
Back to the equation:
-(A^2-6)
We get rid of parentheses
-A^2+6=0
We add all the numbers together, and all the variables
-1A^2+6=0
a = -1; b = 0; c = +6;
Δ = b2-4ac
Δ = 02-4·(-1)·6
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$
$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-1}=\frac{0-2\sqrt{6}}{-2} =-\frac{2\sqrt{6}}{-2} =-\frac{\sqrt{6}}{-1} $
$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-1}=\frac{0+2\sqrt{6}}{-2} =\frac{2\sqrt{6}}{-2} =\frac{\sqrt{6}}{-1} $

See similar equations:

| 5y/8=30 | | 25^2x-18=0 | | 5b-7.2=7.2b | | X-2(x+1)=2x | | 6m+7=5m+9. | | 5(2x+4)=3(4x+2) | | a=-3;4a+3=-9 | | 3x+4-5x+3=22-7x | | 1/x=1/(x+1)+1/(x-1) | | 8x+12=4(3+3x) | | 4x+3=-17+2x | | 12=3w-3 | | 4(x+1)+8=16. | | 7x-7(3x-7)=49 | | 4(2x-5)=2(6-x) | | 3z/7+1=9 | | 16-x/14=-12 | | -2^(0.3x-2)=-3/8x | | 4-2^(0.3x-2)=-(3/8)x+5 | | 4-2^(0.3x-2)=-3/8x+5 | | X-4=(3x+14)/6 | | 8c+15-3c=36+2c | | x=x20+1/2x | | -30-3z-z=48-2z | | 10=1.12^x | | u^2-u=0 | | -10=-2f+5 | | 5x/3-62=7 | | 96=8x/4+4 | | 9x-8=-6 | | 5x+.75=7.25 | | 2t-9=6-3t |

Equations solver categories