If it's not what You are looking for type in the equation solver your own equation and let us solve it.
A2+10=56
We move all terms to the left:
A2+10-(56)=0
We add all the numbers together, and all the variables
A^2-46=0
a = 1; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·1·(-46)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$A_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*1}=\frac{0-2\sqrt{46}}{2} =-\frac{2\sqrt{46}}{2} =-\sqrt{46} $$A_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*1}=\frac{0+2\sqrt{46}}{2} =\frac{2\sqrt{46}}{2} =\sqrt{46} $
| 2+5xB=52 | | n/2=1-n/3 | | X/2*30=3/4x*5 | | n÷2=1-n÷3 | | X/2+30=3/4x+5 | | 25x+374=50x-250 | | 6f-12=48 | | d÷/5=11 | | 7x=117649 | | d÷5=11 | | 4x+8+68=180 | | 5x+7=-5-3x | | x+x+x+x+x=50-5x | | y/3-3=-10 | | 2(4x-12-x)=4-x | | 12=m+5+m | | 2(4(x-3)-x)=4-x | | 2(7k-4)=6-4(k+5) | | 2y^2-14-7y=0 | | -1+3x=-7-6x | | 50+2x=130 | | 5(x+3)-x=25 | | 32-x=2x+5 | | -7x+15=64 | | z/7+9=9 | | 6x-5=9x-9 | | 3+2(x-2)=5 | | x=2*3*5*5 | | 2a=3a+9 | | V=s3, | | x+1+3+x+3+x+3+x+3=100 | | 7m+15-2m=20-5m |