If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+90+(B+45)+3/2B+(2B-90)=540
We move all terms to the left:
+90+(B+45)+3/2B+(2B-90)-(540)=0
Domain of the equation: 2B!=0We add all the numbers together, and all the variables
B!=0/2
B!=0
B∈R
(B+45)+3/2B+(2B-90)-450=0
We get rid of parentheses
B+3/2B+2B+45-90-450=0
We multiply all the terms by the denominator
B*2B+2B*2B+45*2B-90*2B-450*2B+3=0
Wy multiply elements
2B^2+4B^2+90B-180B-900B+3=0
We add all the numbers together, and all the variables
6B^2-990B+3=0
a = 6; b = -990; c = +3;
Δ = b2-4ac
Δ = -9902-4·6·3
Δ = 980028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980028}=\sqrt{36*27223}=\sqrt{36}*\sqrt{27223}=6\sqrt{27223}$$B_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-990)-6\sqrt{27223}}{2*6}=\frac{990-6\sqrt{27223}}{12} $$B_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-990)+6\sqrt{27223}}{2*6}=\frac{990+6\sqrt{27223}}{12} $
| 3/5x=850 | | 12=13+7b | | 2a+5=8a-7 | | 5(3x+4)-5(2x+3)=25x=4 | | 17=8-3(5+2w) | | (2x-2)(x-4)=0 | | (x+15)+(140)=(15x+15 | | 200+.20x=300+.12x | | 3x^2+1000=-17x^2+10000 | | -8(8+n)=-6(7n-3)=54 | | V=πr2 | | -3+9x=7x+9 | | 3(3p+4)=12+9p | | -40-4b=-4(-2+7b) | | 8v-7v=4 | | 6x+6+2x+4=180 | | 6x+6+2x+4=18- | | 17x-4=-11x-60 | | V2-5v-24=0* | | 2x2L=4L | | 2x+8=4x-5=5x+7-3x-10 | | =x3+5 | | 3y2+7y-6=0* | | 7+10x+66=28x+1 | | -12x-12=11x-35 | | 1/2x-4=1/2x+4 | | -34+7a=6(1+3a)-7 | | 6+1.10x=1.15x+8 | | 2x-3/2-x+1/3=3x+8/4 | | 7.5k=10 | | −5(2x+6)+9x=−32 | | 2x–3x+5=18 |