E=(4-5i)(3+7i)

Simple and best practice solution for E=(4-5i)(3+7i) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for E=(4-5i)(3+7i) equation:



=(4-5E)(3+7E)
We move all terms to the left:
-((4-5E)(3+7E))=0
We add all the numbers together, and all the variables
-((-5E+4)(7E+3))=0
We multiply parentheses ..
-((-35E^2-15E+28E+12))=0
We calculate terms in parentheses: -((-35E^2-15E+28E+12)), so:
(-35E^2-15E+28E+12)
We get rid of parentheses
-35E^2-15E+28E+12
We add all the numbers together, and all the variables
-35E^2+13E+12
Back to the equation:
-(-35E^2+13E+12)
We get rid of parentheses
35E^2-13E-12=0
a = 35; b = -13; c = -12;
Δ = b2-4ac
Δ = -132-4·35·(-12)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$E_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$E_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1849}=43$
$E_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-43}{2*35}=\frac{-30}{70} =-3/7 $
$E_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+43}{2*35}=\frac{56}{70} =4/5 $

See similar equations:

| (-11)-4x=53 | | -9x+x=-32 | | 5=-9+x+8 | | 0.1+0.08x=0.1528 | | -4x-3=-9x-4 | | 3x+4/2+1=5x+10/8 | | 21x+3=3x+5 | | u2=2u | | 4b+32=9-3b | | -(-5-6x)=4(5x+3 | | 35=7(m-90) | | (x+2)3/4=27 | | -6-c=-3 | | 4a+2(a-1)=3a+4 | | -20x=260 | | -1=6v+5 | | 5x^2-42x-400=0 | | 3b+6b-7+2=24-2 | | 14x-18=-20 | | -5(x+1)-18=13+4 | | -17x=153 | | 4=y/6+8 | | -3x+3x=-9x-8 | | 1/3(p+9)=-12 | | 35=7*m-90 | | 26=w/2-13 | | (8x-12)=(5x+3) | | 2x+11=x+10 | | 37=3w+10 | | -4(7x+8)=28x-32 | | u/2+9=14 | | 5u=u=16 |

Equations solver categories