If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(0)=4F^2-40F+5
We move all terms to the left:
(0)-(4F^2-40F+5)=0
We add all the numbers together, and all the variables
-(4F^2-40F+5)=0
We get rid of parentheses
-4F^2+40F-5=0
a = -4; b = 40; c = -5;
Δ = b2-4ac
Δ = 402-4·(-4)·(-5)
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{95}}{2*-4}=\frac{-40-4\sqrt{95}}{-8} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{95}}{2*-4}=\frac{-40+4\sqrt{95}}{-8} $
| 5m+5m-3m=35 | | 3/10=m/3 | | 21-5(x+3)= | | -34=12+23x | | s-2/5=1/4 | | s−2/5=1/4 | | 5=2t− | | 1/9=1/d1/18 | | 5=2t−1 | | 1/7=n/6 | | x.x=32 | | 2x-30°=3x+10° | | 3x+80=350 | | m/3=3/10 | | (-4y3-5y+16)+(4y2-y+9)=(−4y3−5y+16)+(4y2−y+9) | | 3n-(10n-15)=12 | | 4/9=c-4/9 | | 3x+7x+…=12x | | -3/2p=-4 | | 5−3t=3t−7 | | 8−7|5x−3|=−55 | | x3+5=-12 | | -2/3p=-4 | | 2/5+a=4/5 | | |5-4/5k|=11 | | 2.3x+8,4 =3,1x+37,2 | | 8k+10k+1=19 | | 4-6x=1-4x | | 6x-1+x=63-x | | 8(2-p)=p+24 | | i-4=31 | | 2v+10v=12 |