If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2)=3F^2
We move all terms to the left:
(2)-(3F^2)=0
a = -3; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-3)·2
Δ = 24
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{24}=\sqrt{4*6}=\sqrt{4}*\sqrt{6}=2\sqrt{6}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{6}}{2*-3}=\frac{0-2\sqrt{6}}{-6} =-\frac{2\sqrt{6}}{-6} =-\frac{\sqrt{6}}{-3} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{6}}{2*-3}=\frac{0+2\sqrt{6}}{-6} =\frac{2\sqrt{6}}{-6} =\frac{\sqrt{6}}{-3} $
| h=4.5+8.75 | | 5+3d=7(4-2d) | | 5+3d=7(4-2d | | c=30.00-1.6 | | c=8.00+3.6 | | -14+6x=2(3x-10)+6 | | b=30.25-0.20 | | 0.2(2x+1,470)=x | | d=5/6 | | d= 5/6 | | -66=x+15 | | -a+a=-2 | | 6=h/10 | | 6=h10 | | 90+2y-10+4y+20+40-2y=180 | | 60=3p | | 4^(2n+3)=2^6 | | -4w/5=-28 | | 4=g/7 | | -(5e-8)=2-5e | | -7/8y=-28 | | (2x+6)+(5x+1)+(2x-7)=180 | | 8^(2x-3)=(1/16)^(x-2) | | t+32=8 | | (4x+11)+74+63=180 | | (8x-11)+49+30=180 | | (3x+3)+54+90=180 | | 3+5(9+2n)=48+5n | | A.e+3/8=2 | | 4.3=8u-8.5 | | -2x-1=-7+44 | | b/4+ 20=28 |