F(20)=(x+0.25x)(50-x)

Simple and best practice solution for F(20)=(x+0.25x)(50-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(20)=(x+0.25x)(50-x) equation:



(20)=(F+0.25F)(50-F)
We move all terms to the left:
(20)-((F+0.25F)(50-F))=0
We add all the numbers together, and all the variables
-((+1.25F)(-1F+50))+20=0
We multiply parentheses ..
-((-1F^2+50F))+20=0
We calculate terms in parentheses: -((-1F^2+50F)), so:
(-1F^2+50F)
We get rid of parentheses
-1F^2+50F
Back to the equation:
-(-1F^2+50F)
We get rid of parentheses
1F^2-50F+20=0
We add all the numbers together, and all the variables
F^2-50F+20=0
a = 1; b = -50; c = +20;
Δ = b2-4ac
Δ = -502-4·1·20
Δ = 2420
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2420}=\sqrt{484*5}=\sqrt{484}*\sqrt{5}=22\sqrt{5}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-22\sqrt{5}}{2*1}=\frac{50-22\sqrt{5}}{2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+22\sqrt{5}}{2*1}=\frac{50+22\sqrt{5}}{2} $

See similar equations:

| 4+6d=16 | | 2/3w=-20 | | 3.4+10m=8.59 | | -3.8s-6.9s-19.73=19.54-7.4s | | -7(4x+2)+13x=46 | | 5x+2/4=3x-10 | | 6(t-2)=2(9-2t) | | 42=b/5+36 | | 1/2(5z-3)=0.25(3z+2) | | 4/3(15-21x)+x=7 | | ?x5=15 | | 34=8r | | x+.4x=224 | | 2x+3=-3x-19 | | 4-(2y-1)=10y+18+y | | 24.5=1*5p | | x-6/3=10 | | (2x-1)(3x-5)=(4x-2)(3x-2) | | 2(w-5)=~ | | -11x-19=-9x+13 | | 4(y+20=32 | | 8x+4=5x10 | | 1/2x+1/2x-1=-5 | | 50/15=4/x | | -2(u-4)=2u-8 | | 3x+5+4x+7=180 | | 5x-6=3(x-2)+2 | | 9x-11=4+14x | | 24+-2x=10 | | -20+7w=7w-5w+15 | | 3w=17.94 | | (10m)-6=54 |

Equations solver categories