F(5)=x2+2x+1

Simple and best practice solution for F(5)=x2+2x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(5)=x2+2x+1 equation:



(5)=F2+2F+1
We move all terms to the left:
(5)-(F2+2F+1)=0
We add all the numbers together, and all the variables
-(+F^2+2F+1)+5=0
We get rid of parentheses
-F^2-2F-1+5=0
We add all the numbers together, and all the variables
-1F^2-2F+4=0
a = -1; b = -2; c = +4;
Δ = b2-4ac
Δ = -22-4·(-1)·4
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{5}}{2*-1}=\frac{2-2\sqrt{5}}{-2} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{5}}{2*-1}=\frac{2+2\sqrt{5}}{-2} $

See similar equations:

| 51=26h | | u2+24u+23=0 | | (3z5+5z4+z+5)(z+2)−1=0 | | x+60º=180º | | 32x=5x | | -8(n-3)=4n+7(3-6n) | | 2(12+3x)=42= | | 2x+52=x-30 | | 5=3x-120 | | 32.663=x+11.363 | | ⅓(x-9)=-4 | | 3a-2a-3=0 | | 2y+30+2y-6=180 | | x-15º=75º | | 15(x+3)=60= | | 2x+89=x | | -8r-40=6(8-5r) | | -2n+18=-4 | | 5x-8+5x-8+63=180 | | 2x-14+2x-16+6x-20=180 | | 4(x+7)=4(1-2x) | | 5y-9+4-7y=-18y+27 | | 3(i-8)-8i=1+5(2i+1) | | 2(20+2x)=80= | | 25=5(k-78) | | 6(2a-a+1=24 | | x=2*(Y+1) | | x/10+19=20* | | 7z+4=48 | | -8r-40=6(8=5r) | | a+6=11,a=17 | | –y=41 |

Equations solver categories