F(6)=x2-4/20

Simple and best practice solution for F(6)=x2-4/20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(6)=x2-4/20 equation:



(6)=F2-4/20
We move all terms to the left:
(6)-(F2-4/20)=0
We add all the numbers together, and all the variables
-(+F^2-4/20)+6=0
We get rid of parentheses
-F^2+6+4/20=0
We multiply all the terms by the denominator
-F^2*20+4+6*20=0
We add all the numbers together, and all the variables
-F^2*20+124=0
Wy multiply elements
-20F^2+124=0
a = -20; b = 0; c = +124;
Δ = b2-4ac
Δ = 02-4·(-20)·124
Δ = 9920
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{9920}=\sqrt{64*155}=\sqrt{64}*\sqrt{155}=8\sqrt{155}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{155}}{2*-20}=\frac{0-8\sqrt{155}}{-40} =-\frac{8\sqrt{155}}{-40} =-\frac{\sqrt{155}}{-5} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{155}}{2*-20}=\frac{0+8\sqrt{155}}{-40} =\frac{8\sqrt{155}}{-40} =\frac{\sqrt{155}}{-5} $

See similar equations:

| Y=20000x | | x+7=112 | | x+112=145 | | Y=120000-20000x | | Y=40-0.5x | | 4^{2x+1}=10 | | x-74=42 | | 3(-2n-8)=-5n-17 | | 3x5−15=81 | | C×c=121 | | x+44=124 | | 0=k(5+3)(5-5) | | H+3.5=9h= | | 9x=3x*4 | | x+24=77 | | 9x=2x/9 | | x+56=79 | | 54°-(8p+4)=180 | | 7^2n=52^(4n+3) | | 2(–8x+17)=2x+16 | | 9x=3x4 | | 1571=127-20-x+954 | | 2(–8x+17)=5x-3x+16 | | 2x+6=282 | | 2(6z+10)=-3z+77+19z-97 | | 2x+7=6333 | | 3x+63+90=180 | | 3(x+4)+5x=15 | | 18/x=18 | | 2(4p-65)=3p-22+p | | x/4+77=180 | | x/5+18=180 |

Equations solver categories