F(p)=(1440-12p)(p-20)

Simple and best practice solution for F(p)=(1440-12p)(p-20) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(p)=(1440-12p)(p-20) equation:



(F)=(1440-12F)(F-20)
We move all terms to the left:
(F)-((1440-12F)(F-20))=0
We add all the numbers together, and all the variables
F-((-12F+1440)(F-20))=0
We multiply parentheses ..
-((-12F^2+240F+1440F-28800))+F=0
We calculate terms in parentheses: -((-12F^2+240F+1440F-28800)), so:
(-12F^2+240F+1440F-28800)
We get rid of parentheses
-12F^2+240F+1440F-28800
We add all the numbers together, and all the variables
-12F^2+1680F-28800
Back to the equation:
-(-12F^2+1680F-28800)
We get rid of parentheses
12F^2-1680F+F+28800=0
We add all the numbers together, and all the variables
12F^2-1679F+28800=0
a = 12; b = -1679; c = +28800;
Δ = b2-4ac
Δ = -16792-4·12·28800
Δ = 1436641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1679)-\sqrt{1436641}}{2*12}=\frac{1679-\sqrt{1436641}}{24} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1679)+\sqrt{1436641}}{2*12}=\frac{1679+\sqrt{1436641}}{24} $

See similar equations:

| 4x–16=x–7 | | 2x=-x+24 | | 7.4=−2.7(z+3.2) | | 15x+12=177 | | 105-w=231 | | -7x+7=5x+43 | | 178=49-u | | 7x-36=-99 | | 9(m+5)−3(m−2)=8m+31 | | 2(-1x+10)=-2 | | 2-14x-9=7(2x+1)-14 | | –2f+3=5 | | 18x+14=90 | | -1.1t=-1.21 | | 4(-4x-6)=-136 | | ?x?x?=216 | | 7s+2=2s+3 | | 16^(x−7)=19 | | 50=8v+10 | | 7v+2=2(6+v) | | 0.7(3x+6)=1.1-(x+2 | | 10=14-2k | | n-10+6n-3=8 | | 2x-4x+2=3+1 | | 17=2m+5 | | 9v+1=37 | | 8-0.02x=2.33x+3.5 | | 3n+–1=8 | | 4x=2=x+28 | | 2(2x7)=46 | | 464-0.008n=0.5 | | 7+9x=52x |

Equations solver categories