If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(F)=((F+3)(F-1))/((F-2)(F+2))
We move all terms to the left:
(F)-(((F+3)(F-1))/((F-2)(F+2)))=0
Domain of the equation: ((F-2)(F+2)))!=0We multiply parentheses ..
F∈R
-(((+F^2-1F+3F-3))/((F-2)(F+2)))+F=0
We multiply all the terms by the denominator
-(((+F^2-1F+3F-3))+F*((F-2)(F+2)))=0
We calculate terms in parentheses: -(((+F^2-1F+3F-3))+F*((F-2)(F+2))), so:We get rid of parentheses
((+F^2-1F+3F-3))+F*((F-2)(F+2))
We use the square of the difference formula
((+F^2-1F+3F-3))+F^2-4
We calculate terms in parentheses: +((+F^2-1F+3F-3)), so:We get rid of parentheses
(+F^2-1F+3F-3)
We get rid of parentheses
F^2-1F+3F-3
We add all the numbers together, and all the variables
F^2+2F-3
Back to the equation:
+(F^2+2F-3)
F^2+F^2+2F-3-4
We add all the numbers together, and all the variables
2F^2+2F-7
Back to the equation:
-(2F^2+2F-7)
-2F^2-2F+7=0
a = -2; b = -2; c = +7;
Δ = b2-4ac
Δ = -22-4·(-2)·7
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{15}}{2*-2}=\frac{2-2\sqrt{15}}{-4} $$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{15}}{2*-2}=\frac{2+2\sqrt{15}}{-4} $
| 3g–14=13 | | -32x+4=-8 | | -6y*4+11y=-16 | | 2(y-8)=24 | | 700/1000=x/10 | | 2x+(x+65)+65=180 | | 7=16-3e | | 3+6x=x+7/2 | | -6=3/h-7 | | 7x+11=4x+5 | | 4y*4y=0 | | 7x-11=4x+5 | | F(13)=3x+4 | | 14-25x=4x+9 | | 6c^2+18c=0 | | 4(3b-7)=8 | | 4m,m=3 | | 6x^2=1350 | | 7-3x=4x-6 | | 10x+14=-21 | | x*1.5=x*3 | | 10x+14=21 | | 8y÷7+5=77 | | (2x– 5)2– (3x+ 2)2= 0 | | (2x – 5)2 – (3x + 2)2 = 0 | | -3(2x-4+6x+7)=1/2(-36x+18) | | 26+9a=-5a+74 | | -6x-8=-13x-29 | | 12y+5=7y+25 | | -8m+9=-10m+15 | | -4y+10=-6y-16 | | 10x+6=51-5x |