F(x)=(2x+1)(x+5)

Simple and best practice solution for F(x)=(2x+1)(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(2x+1)(x+5) equation:



(F)=(2F+1)(F+5)
We move all terms to the left:
(F)-((2F+1)(F+5))=0
We multiply parentheses ..
-((+2F^2+10F+F+5))+F=0
We calculate terms in parentheses: -((+2F^2+10F+F+5)), so:
(+2F^2+10F+F+5)
We get rid of parentheses
2F^2+10F+F+5
We add all the numbers together, and all the variables
2F^2+11F+5
Back to the equation:
-(2F^2+11F+5)
We add all the numbers together, and all the variables
F-(2F^2+11F+5)=0
We get rid of parentheses
-2F^2+F-11F-5=0
We add all the numbers together, and all the variables
-2F^2-10F-5=0
a = -2; b = -10; c = -5;
Δ = b2-4ac
Δ = -102-4·(-2)·(-5)
Δ = 60
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{60}=\sqrt{4*15}=\sqrt{4}*\sqrt{15}=2\sqrt{15}$
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{15}}{2*-2}=\frac{10-2\sqrt{15}}{-4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{15}}{2*-2}=\frac{10+2\sqrt{15}}{-4} $

See similar equations:

| (3^2)^6x=81 | | g-428=426 | | b-9=-27 | | G=15x-10 | | -8=8(4x−1) | | –6=2+2s | | 5b−8=42 | | 2p=864 | | 18=x(5)-x(2) | | 5(2x-4)=4x-26 | | (6x-2)+72+(11x-9)=180 | | 90=30-7r | | 2x(2x+3x)-3x=14 | | z-235=176 | | -8x+5+2x=-13 | | 3y-47=y+27 | | 2x+13-3x=x+5 | | 10r+8=18 | | 27=x(5)-x(2) | | x+19=-x-17 | | -10x+6=10-4x | | -9x+7+10x=24 | | 12(4x-1)=372 | | -4(10n-6)=-406 | | 45x+67=45x+78 | | 11=u/27 | | 9=30-7r | | 5m+2=-3m-6 | | 2(4x+13)=130 | | 5m+2=–3m–6 | | 6x+3=3-6x | | 880=-22q |

Equations solver categories