F(x)=(2x-4)(x-6)

Simple and best practice solution for F(x)=(2x-4)(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(2x-4)(x-6) equation:



(F)=(2F-4)(F-6)
We move all terms to the left:
(F)-((2F-4)(F-6))=0
We multiply parentheses ..
-((+2F^2-12F-4F+24))+F=0
We calculate terms in parentheses: -((+2F^2-12F-4F+24)), so:
(+2F^2-12F-4F+24)
We get rid of parentheses
2F^2-12F-4F+24
We add all the numbers together, and all the variables
2F^2-16F+24
Back to the equation:
-(2F^2-16F+24)
We add all the numbers together, and all the variables
F-(2F^2-16F+24)=0
We get rid of parentheses
-2F^2+F+16F-24=0
We add all the numbers together, and all the variables
-2F^2+17F-24=0
a = -2; b = 17; c = -24;
Δ = b2-4ac
Δ = 172-4·(-2)·(-24)
Δ = 97
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-\sqrt{97}}{2*-2}=\frac{-17-\sqrt{97}}{-4} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+\sqrt{97}}{2*-2}=\frac{-17+\sqrt{97}}{-4} $

See similar equations:

| F(x)=-3(x+1)(x-5) | | 36=4s+14 | | -2(2x–4)=3(x+12) | | F(x)=2(x-3)(3-9) | | 22+8a=7(a+3)-4 | | 3(2x-1)+5(x-4)=38 | | 4w+4.4=17.6 | | 3(y+3)=2(y+2) | | 195e-65.00=52.85 | | -2.5=3.5x=1.5x+16 | | y-49+y-16=y+42 | | v+16+v+7=v+50 | | 5p+4=-20 | | x-18+x+17=x+50 | | z+z=z+44 | | 4x+15-2x=0 | | w-37+w-27=w+37 | | 3x+13.5=27-1.5× | | s-50+s-50=s | | p+14+p+12=p+49 | | P+12+p+14=p+49 | | 4x9=6x= | | 50=10+2(p+5) | | 0.6x-5=0.1x=+7 | | 3(b-4)+56=44 | | a+a+12=32 | | 345-5f=300 | | 3=x-8/5 | | ((3x-4)^2)^0.5+5x-12=0 | | 10y-3=10 | | 8-5n=4-7n | | 8x^2+64+120=0 |

Equations solver categories