F(x)=(30-2x)(30-2x)

Simple and best practice solution for F(x)=(30-2x)(30-2x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for F(x)=(30-2x)(30-2x) equation:



(F)=(30-2F)(30-2F)
We move all terms to the left:
(F)-((30-2F)(30-2F))=0
We add all the numbers together, and all the variables
F-((-2F+30)(-2F+30))=0
We multiply parentheses ..
-((+4F^2-60F-60F+900))+F=0
We calculate terms in parentheses: -((+4F^2-60F-60F+900)), so:
(+4F^2-60F-60F+900)
We get rid of parentheses
4F^2-60F-60F+900
We add all the numbers together, and all the variables
4F^2-120F+900
Back to the equation:
-(4F^2-120F+900)
We add all the numbers together, and all the variables
F-(4F^2-120F+900)=0
We get rid of parentheses
-4F^2+F+120F-900=0
We add all the numbers together, and all the variables
-4F^2+121F-900=0
a = -4; b = 121; c = -900;
Δ = b2-4ac
Δ = 1212-4·(-4)·(-900)
Δ = 241
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$F_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(121)-\sqrt{241}}{2*-4}=\frac{-121-\sqrt{241}}{-8} $
$F_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(121)+\sqrt{241}}{2*-4}=\frac{-121+\sqrt{241}}{-8} $

See similar equations:

| 1.4l-45.8=77.1-0.2 | | |x|-22=14 | | 4(x+2)=-8+4x | | 13/y=8/11 | | k/8.9+88.5=42.4 | | x=2x-83 | | 6x+1+3x+11=25 | | -8.5x+0.84=-5.96 | | g–3+ –17=–19 | | 16=-5t-4 | | 2(c-16)=-2 | | q=62+1-4 | | q-459/12=24 | | 2(c-16)=30 | | 9x-3+5x=4x+4-6 | | z/4+3=-45 | | k/5+8=23 | | p/11+268=281 | | s/14-6=2 | | -32x=8x-320 | | 2(14+w)=56 | | 32x=8x-320 | | 45+x=126 | | 0=x2=6 | | 9x+5=208 | | 173=b/25-161 | | r+12=-9 | | -21-8a=-1+6(9-5a) | | 15x-5=50x+9 | | 15x-5=50+9 | | 15x-5=50+23 | | -15+2y=5 |

Equations solver categories